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A quantum phase transition is typically induced by tuning an external parameter that appears as a coupling
constant in the Hamiltonian. Another route is to vary the global symmetry of the system, generalizing, e.g.,
SU�2� to SU�N�. In that case, however, the discrete nature of the control parameter prevents one from identi-
fying and characterizing the transition. We show how this limitation can be overcome for the SU�N� Heisen-
berg model with the help of a singlet projector algorithm that can treat N continuously. On the square lattice,
we find a direct, continuous phase transition between Néel-ordered and crystalline bond-ordered phases at
Nc=4.57�5� with critical exponents z=1 and � /�=0.81�3�.
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I. INTRODUCTION

The field of quantum magnetism encompasses a large va-
riety of physical phenomena that are of current experimental
and theoretical interest. These include competition between
interactions �frustration�, ordering in conventional or uncon-
ventional magnetic states, and the existence of fractionalized
excitations. In two dimensions, where some of the most un-
usual physics occurs, there is a conspicuous absence of meth-
ods for studying the behavior of quantum magnets with high
precision. On the analytical side, neither the powerful meth-
ods devised for dimension d=1 �bosonization, conformal
field theory� nor the mean-field methods exact in high d are
available. On the numerical side, simulations are difficult
because of the enormous size of the Hilbert space and, for
stochastic methods, because of the fatal “sign problem.”

One way to relax these strong methodological constraints
is to decrease the role of quantum fluctuations. For instance,
considering the classical limit of magnets with large spin S
eases analytical studies. This limit, however, very often
misses the important competition between the instabilities
existing only at the quantum level. An alternative route—one
that preserves the quantum fluctuations—is to enlarge the
symmetry of the model, e.g., by extending the SU�2� spin
symmetry to SU�N�. This has proved very useful in the past,
as the N→� limit often allows for an exact analytical treat-
ment. Methods to study 1 /N corrections are also available,
although they cannot fully capture the exact details of what
happens at finite N. The advantage of SU�N� models over
classical ones is that they naturally allow for quantum states
of matter �such as valence-bond solids� by construction, even
if the off-diagonal elements of the Hamiltonian are sup-
pressed in the large-N limit.

Using this technique, and building on previous work,1

Read and Sachdev2 have studied in detail the SU�N� gener-
alization of the Heisenberg Hamiltonian on the square lattice.
For sufficiently large N, the system spontaneously breaks
lattice translation symmetry to form a valence-bond crystal
�VBC�. For small N �including the standard SU�2� model at

N=2�, the ground state is antiferromagnetically ordered. The
details of the phase diagram and of the VBC depend on the
representation of the generators of the SU�N� algebra consid-
ered: for the case of square Young tableaux with n columns,
a direct phase transition between the Néel and VBC states is
predicted to occur at the �mean-field� value N /n�5.26.

In a technical breakthrough, Kawashima and
co-workers3–5 extended a quantum Monte Carlo �QMC� loop
algorithm designed for SU�2� models to the SU�N� case �for
all integer N and for all single-row Young tableaux�. Study-
ing the square-lattice case with this exact numerical method,
they found for n=1 that the N=4 model is Néel ordered,
whereas the N=5 model supports VBC order. This confirmed
the analytical large-N predictions, but because of the discrete
nature of the algorithm these studies could not rule out an
intermediate phase between N=4 and 5. Even if this �possi-
bly spin-liquid6� phase does not exist, it is impossible to
obtain a precise value for the critical parameter Nc separating
the two phases and to ascertain the nature of the phase tran-
sition at Nc.

In this paper, we describe a quantum Monte Carlo algo-
rithm, formulated in the total singlet basis, that can treat the
parameter N continuously �in the manner of analytical,
large-N techniques�. Applying this approach to the square-
lattice SU�N� Heisenberg model, we find that there is a direct
transition occurring at Nc=4.57�5� between the Néel and
VBC columnar phases. The transition is found to be second
order, with critical exponents z=1 and � /�=0.81�3�. At the
end of the paper we discuss the implications of finding a
second-order quantum phase transition between states with
incompatible symmetries and the possible connection to the
deconfined quantum criticality �DQC� scenario.7

II. MODEL HAMILTONIAN

Our starting point is the SU�N� generalization of the
quantum Heisenberg model
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H = − J�
�i,j�

Hij =
J

N
�
�i,j�

�
�,�=1

N

J�
��i�J�

��j� . �1�

Here, the exchange coupling J=1 sets the energy scale, and
�i , j� denotes nearest-neighbor sites i and j. The generators of
the SU�N� algebra, J�

�, satisfy the anticommutation relation

�J�
��i�,J��

���j�� = �ij�����J�
���i� − ����J��

� �i�� . �2�

We consider the “quark-antiquark” model, taking the funda-
mental representation of the generator on one sublattice �a
single-box Young tableau� and its conjugate �N−1 boxes in
one column� on the other. The fusion rule for the two repre-
sentations is depicted graphically in Fig. 1�a�.

If we describe the fundamental representation using a ba-
sis 	�� with �=1,2 , . . . ,N, then the conjugate representation
has states 	�̄� that are fully antisymmetrized tensor products
of the form

	�̄� =
1


�N − 1�!
�

�2,. . .,�N

��,�2,. . .,�N	�2, . . . ,�N� . �3�

An SU�N� singlet formed between spins at sites i and j in
opposite sublattices is the maximally entangled state

	��ij =
1


N
�
�=1

N

	��i	�̄� j

=
1


N!
�

�1,. . .,�N

��1,�2,. . .,�N	��i	�2, . . . ,�N� j . �4�

Equation �1� can be understood as an operator that performs
a local singlet projection Hij =− 1

NJ�
��i�J�

��j�= 	��ij��	ij
across all links of the square lattice.

The SU�N� Heisenberg model can alternatively be written
as an SU�2� system with spin S= �N−1� /2 moments interact-
ing via higher-order exchange processes. An exact mapping
connects the conventional SU�2� spin operators to the SU�N�
generators as follows:

S+ = �
�=1

N−1


��N − ��J�
�+1, �5�

S− = �
�=1

N−1


��N − ��J�+1
� , �6�

Sz =
1

2 �
�=1

N

�N + 1 − 2��J�
�. �7�

The Hamiltonian can then be expressed in terms of

Hij = �
l=1

2S �1 – 2S�S + 1� + Si · S j

l�l + 1� �� . �8�

For instance, Hij =1 /4−Si ·S j for S=1 /2�N=2�; Hij

= 1
3 ��Si ·S j�2−1� for S=1�N=3�; etc. This was the starting

point of previous finite-temperature QMC investigations of
this model,3,4 where a path-integral technique was developed
in the Sz basis of the spins.5 In this paper, we take a rather
different route, using a T=0 algorithm formulated in the
SU�2� total singlet basis of the spins S.

III. BOND BASIS

Consider the subspace formed by bipartite VB states8 in
which two spins S in opposite sublattices form a VB by
coupling pairwise in a singlet, formally given in the Sz basis
by

	��ij =
1


2S + 1
�

m=−S

S

�− 1�m−S	m�i � 	− m� j �9�

�cf. Eq. �4��. For general S, this subspace does not span the
full SU�2� singlet manifold but only the subspace of states
that are also SU�2S+1� symmetric.

For bipartite valence bonds, we can impose a VB orien-
tation convention such that the overlap between any two
states is positive. This basis is nonorthogonal, and the over-
lap between two VB states is

�v1	v2� = �2S + 1�Nl−Nv, �10�

where Nl is the number of loops formed by superimposing
the two VB states 	v1� and 	v2�, and Nv is the number of VBs
in each state �or, equivalently, half the number of lattice
sites�. This is a simple generalization of the well-known
overlap rule for S=1 /2.

The Perron-Frobenius theorem tells us that on a bipartite,
finite lattice the SU�N� symmetric Hamiltonian �1� admits a
unique ground state. This state is an SU�N� singlet, which
can be expressed in the bipartite VB basis.

The operator Hij obeys the rules Hij	��ij = 	��ij and
Hij	��il	��kj =

1
N 	��ij	��kl. As a consequence, the action of Hij

on VB states is extremely simple9 and consists of the bond
rearrangements depicted in Fig. 1�b�. We exploit this fact to
simulate the SU�N� model, noting that the VB projector
QMC �Ref. 10� developed for S=1 /2 works with precisely
such update rules. For the sake of completeness, we describe

� �

���

�

���
���

���

=

�

�

��

�

���

���

FIG. 1. �Color online� �a� An A-sublattice and a B-sublattice
spin can pair to form a singlet, which corresponds to a column of
zero �modulo N� boxes. �b� Update rules for the action of Hij �red
line� on VB singlet states �black bonds�.
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this method �emphasizing the few details that differ� in Sec.
IV.

What remains is to determine how to compute observ-
ables. It is well known in the S=1 /2 case that most observ-
ables can be written in terms of estimators based on the
overlap loops.8 For instance, the spin correlator
�v1	Si ·S j	v2� / �v1 	v2�= �3 /4��ij if spins i and j belong to the
same loop, 0 otherwise. Here �ij =1 if i and j are on the same
sublattice, −1 otherwise. We have generalized these rules for
the spin S case, and the resulting nonvanishing loop dia-
grams are given in Fig. 2, alongside the value of their con-
tribution.

We now make our key observation: since the update rules,
the Monte Carlo weights, and the estimators have analytical
expressions in N �or S, via N=2S+1�, simulations can be
performed for arbitrary, continuous values of N. Formally,
this can be understood as an analytic continuation from inte-
ger to real N. This is a great advantage over other QMC
techniques,5 which are restricted to half integer and integer
S. Large-N analytical techniques2 can also treat continuous
values of N, but our numerical technique allows for an exact
treatment of the Hamiltonian, in contrast to the mean-field
approximation inherent to the large-N approach.

IV. NUMERICAL METHOD

A. Quantum Monte Carlo algorithm

We employ an efficient Monte Carlo algorithm that is an
extension of the VB projector scheme introduced by
Sandvik.10 The idea is to sample the ground state via the
power method by applying �−H�M �for fixed M sufficiently
large� to an arbitrary valence-bond trial state

		0� = lim
M→�

�− H�M	
T� . �11�

For the purpose of sketching out the algorithm, it is conve-
nient to rewrite Eq. �1� in a form that explicitly indexes the
bonds that are acted upon

− H/J = �
�ij�

Hij = �
b

Hb. �12�

We make the equivalence Hb=Hi�b�,j�b�, where b labels all the
nearest-neighbor bonds on the square lattice. We now expand
the powers of the Hamiltonian as

�− H�M = �
b

Hb�M
= �

�b1,b2,. . .,bM�
�
k=1

M

Hbk
. �13�

Each sequence �b1 ,b2 , . . . ,bM� corresponds to the process in
which 	
T� is acted on by local singlet projectors to give the
propagated VB state 	
M�

	
M� = HbM
. . . Hb2

Hb1
	
T� . �14�

The sum over all possible sequences in Eq. �13� is evaluated
stochastically. For the SU�N� model, the weight of each se-
quence is simply the product of the 1 /N factors �with N=2
for S=1 /2� that appear as a result of the bond rearrange-
ments �see Fig. 1�b�� induced by the Hb’s. The most basic
Monte Carlo move then consists of replacing a few Hb’s at
random. Such changes are accepted or rejected depending on
the ratio of the weight before and after the move.10

To compute observables, two such sequences are gener-
ated with an additional factor in the sampling weight corre-
sponding to the overlap of the two propagated states. For the
SU�N� model, this is computed according to Eq. �10�. The
observables can then be measured using the loop estimators
of Fig. 2 �see Sec. IV B�.

The spin gap �s, the energy difference between the first
triplet excited state and the singlet ground state, can be com-
puted using the same triplet propagation technique intro-
duced for the S=1 /2 case.8,10 Working with a single propa-
gation sequence, we reinterpret the initial VB trial state as
containing one triplet bond; the only difference in the propa-
gation rules is that the triplet is annihilated by Hb when acted
on directly �i.e., the coefficient 1 in the first rule of Fig. 1�b�
is replaced by 0�. Looking at the statistics of the states that
are not annihilated during the full propagation, one can eas-
ily compute the spin gap �s. We refer the reader to Refs. 8
and 10 for more details.

To accelerate the convergence of the algorithm with re-
spect to M, it is useful to sample a valence-bond trial state
that is a superposition of all valence-bond configurations v
with amplitude 
T�v�

	
T� = �
v


T�v�	v� . �15�

There is no restriction on the trial state other than that 
T�v�
be real and non-negative and that ratios 
T�v2� /
T�v1� be
easy to compute for small changes in configuration v1→v2.
In this work, we make use of a simple RVB trial state11 in
which the weight 
T�v�=��i,j��vhij is a product of individual
bond amplitudes hij =1 /rij

p that fall off algebraically as a
function of the bond length. The trial state is thus character-
ized by a single exponent p, which is a free parameter in our
simulations. To ensure that our results are fully converged
�i.e., that M has been chosen sufficiently large� and do not
show any residual dependence on the choice of p, we have

������ � ��

�

�

� �

��

� �

��

� �

� �

�

� �

�

�������
��� � ���

�������
��� � ���

��� � �������� ���� � �� � ��

������
�

�
���� � ���

FIG. 2. �Color online� Loop diagrams contributing to two- and
four-spin correlators �Si ·S j and �Si ·S j��Sk ·Sl�, respectively� and
their contributions. These overlap loops �schematically circular
here� are obtained by superimposing the VB configurations 	v1� and
	v2�. The straight �red� lines link the corresponding sites of the
correlation function. Only diagrams with nonvanishing contribu-
tions are displayed.

SU�N� HEISENBERG MODEL ON THE SQUARE… PHYSICAL REVIEW B 80, 184401 �2009�

184401-3



carried out the ground-state projection starting from four dif-
ferent RVB trial states �two magnetically ordered and two
disordered� corresponding to p=2.7, 3.0, 3.5, and 5.0, and
have checked that all observables converge to the same val-
ues.

We should point out that the updates are simple and sign-
problem-free only because Hij, appearing in Eqs. �1� and �8�,
is a pure, local-singlet projector. Our algorithm does not ap-
ply to general spin-S Hamiltonians. In any case, the bipartite
VB states do not form a basis for the singlet sector of general
spin-S models.

B. Calculation of observables

The quantities of interest at the transition are the stag-
gered magnetization

M =
1

L2�
r

�− 1�rx+rySr, �16�

its Binder cumulant

U = 1 −
3�M4�
5�M2�2 , �17�

and the dimer order parameter D= �Dx ,Dy�, whose two com-
ponents

Da =
1

L2�
r

�− 1�raSr · Sr+êa
�a = x,y� �18�

are directed along the square-lattice vectors êx and êy.
The measurements �M2�, U, and �D2� are carried out us-

ing the two- and four-point rules shown in Fig. 2. For in-
stance, using the same techniques as in Ref. 8, we obtain the
following estimators:

�
M	M2	
M� �
�
M	
M� �

= S�S + 1��
�

L�
2 �19�

and

�
M	M4	
M� �
�
M	
M� �

= −
1

3
�S�S + 1� + 2S2�S + 1�2��

�

L�
4

+
4

3
S�S + 1��

�

L�
2 +

5

3
S2�S + 1�2�

�

L�
2�2

,

�20�

where the sum on � runs over all loops formed by the over-
lap �
M 	
M� � of the two propagated states, and L� is the size
of a given loop.

V. RESULTS

We proceed by presenting our results for the square-lattice
SU�N� model. Figure 3 shows the square of the staggered
magnetization and its Binder cumulant. It is apparent that in
the thermodynamic limit a dome of antiferromagnetic order
survives for 1�N�Nc with Nc between 4 and 5. The Binder
cumulant U vanishes on the large-N side of the transition and

appears to have a crossing point at N�4.3, which drifts
rightward as L increases. We do not have data on sufficiently
large systems to ascertain that the crossing is stable and can
be unambiguously identified as the critical point. As we will
see, a finite-size scaling analysis provides a better estimate of
Nc.

The destruction of the Néel order is driven by the gradual
elimination of singlet pairs that are correlated over long dis-
tances. In the large-N phase, the singlets are predominantly
short ranged and form domains of columnar ordering �see
Fig. 4�. On small lattices, these ordered domains are weak
and they are almost equally distributed among the four de-
generate configurations. This can be seen in the ringlike
structure of the probability distribution P�Dx ,Dy�, shown in
Fig. 5, that appears for NNc. Previous work3,4 established
the existence of VBC order for N�5, but could not deter-
mine whether it was of columnar ��D���0, �D� , ��D ,0��
or plaquette ��D����D , �D�� symmetry. Our results sug-
gest the former. There does not appear to be a true U�1�
degeneracy, as suggested in Ref. 3. Instead, it seems that
there is an additional length scale �VBC much larger than the
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FIG. 3. �Top-left panel� Square of the staggered magnetization
M= 1

L2 �r�−1�rx+rySr as a function of N for systems up to linear size
L=48 �lines are guide to the eyes�. �Top-right panel� The Binder
cumulant U measures the kurtosis of the staggered magnetization
with respect to a purely Gaussian distribution. It vanishes in the
limit L→� in the absence of antiferromagnetic order. �Bottom
panel� A histogram of the magnetic observable is shown for values
of N spanning the transition. The distribution has a single peak.
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spin correlation length �. For ��L��VBC, there is merely an
effective U�1� degeneracy.

A finite-size scaling analysis of the magnetization and
dimer order parameters suggests a continuous transition de-
fined by a single critical value Nc and a single set of critical
exponents �see Fig. 6�. The data are not sufficiently sensitive
to fix the exponent � precisely, and the unusual behavior of
the Binder cumulant—its negative region and strong sub-
leading corrections—makes it unreliable for obtaining an in-
dependent estimate of �. Reasonable fits seem to be achiev-
able for a range of values 0.75���1. On the other hand,
the ratio � /� is relatively stable. Repeating our fitting proce-
dure for M2 and D2 independently with 3000 bootstrap
samples, we conclude that both quantities vanish simulta-
neously and continuously at Nc=4.57�5� with � /�=0.81�3�.
Note that the anomalous dimension �=2� /�−1=0.63�4� is
at least an order of magnitude larger than what would be
expected from either the three-dimensional O�3� or Z4 uni-
versality classes.

In Fig. 7, we plot the spin gap as a function of 1 /L in the
region 4�N�5. For N large enough, the data converges to a

nonzero value in the thermodynamic limit. On the other
hand, for the smallest N, the gap clearly vanishes. A linear
extrapolation in 1 /L �dashed lines in Fig. 7� reveals that the
gap closes at N�4.6, in good agreement with the value Nc
=4.57�5� derived from the order parameters. An uncon-
strained power-law fit yields a slope 1.02�10�, confirming
that the dynamical critical exponent of the phase transition is
z=1.

As is the case for any finite-lattice simulation, we cannot
completely rule out an extremely weak first-order transition.
Nonetheless, we have taken great care to examine the tran-
sition for signs of first-order character and have concluded
that it is almost certainly continuous. We have generated en-
ergy and order parameter histograms with extremely good
statistics close to the transition and have found no evidence
of a bimodal character. See, e.g., the distribution of the stag-
gered magnetization, shown in the bottom panel of Fig. 3,
which is single peaked and evolves smoothly across the tran-
sition.

N=2 N=7

FIG. 4. �Color online� Snapshots of typical VB configurations
for a system of size L=32. Short, nearest-neighbor bonds are drawn
with a line; long bonds are indicated by circles �whose area is
proportional to bond length� at their end points. For N�Nc, many
long bonds stretch across the system. For NNc, short bonds domi-
nate. The shaded �pink� area marks a crystal domain with columnar
bond order.

FIG. 5. �Color online� Density plots of histograms P�Dx ,Dy� of
the x and y components of the dimer order parameter �L=32�. On
the magnetic side of the transition �e.g., N=4.5�Nc�, the distribu-
tion is characterized by a central peak. On the VBC side, the dis-
tribution is ringlike but develops additional weight along the main
axes as N is increased.
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FIG. 6. �Color online� Simultaneous data collapse of the Néel
and dimer correlations can be achieved with a single set of critical
exponents. The left panel shows the QMC measurements plotted in
rescaled coordinates with the values �=0.88, �=0.71, and Nc

=4.57�5�. Other values of � /��0.8 produce good data collapse.
The right panel shows bootstrapped results of � /� versus Nc when
fits of M2 and D2 are performed independently. A single critical
point corresponds to the crossing � /�=0.81�3� and Nc=4.57�5�.
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FIG. 7. The spin gap �s versus the inverse linear size 1 /L close
to the critical point. The dashed line indicates a linear fit for
N=4.6 that extrapolates very close to 0 in the thermodynamic limit.
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One point of concern was that the Binder cumulant has a
small region around the transition where it drops below zero.
This is sometimes a signature of a first-order transition or of
a distribution with a complicated multipeaked structure. The
histograms discussed above rule out the latter: the negative U
seems merely to correspond to a region in which the distri-
bution of the magnetic order parameter is super-Gaussian
�excess kurtosis�. Another important observation relates to
how the negative region evolves with system size. For first-
order phase transitions, one typically observes very large
negative values of the Binder cumulant that increase in mag-
nitude with the system size. This has been explained phe-
nomenologically by Vollmayr et al.12 For the transition ob-
served here, the opposite is true: not only are the values only
slightly negative, but a careful examination shows that the
height of the dip begins to saturate starting around L=28. In
addition to the depth of the negative region being bounded,
its width also vanishes in the thermodynamic limit. Finally, it
is also worth pointing out that the behavior of the SU�N�
transition reported in this work bears little resemblance to the
transition in models whose Néel-VBS transition is known to
be first order �e.g., Ref. 13�, which is marked by strong hys-
teresis effects even at small lattice sizes. These observations
suggest to us that the behavior is only a finite-size effect.

VI. CONCLUSION

In conclusion, we have introduced an algorithm to simu-
late Heisenberg SU�N� models �for the representation with a
single row and column on one sublattice and its conjugate on
the other� on any bipartite lattice. It is formulated in the total
singlet sector and allows for efficient computation with arbi-
trary, continuous values of N. For the square-lattice model,
we find a second-order phase transition between a Néel and
VBC columnar state at Nc=4.57�5�. Constructing a
Ginzburg-Landau theory for this phase transition is not
simple from the symmetry point of view, as the external
parameter N of the SU�N� symmetry is tuned artificially to
unphysical values in our numerics. Naively, the ingredients

seem similar to those encountered in DQC points:7,14 a con-
tinuous Néel-VBC transition, driven by an external param-
eter that favors short VBs of the VBC over the long VBs
needed for magnetic ordering. Strictly speaking, the argu-
ments of Ref. 7 do not apply here, since they rely heavily on
Berry phase effects specific to S=1 /2. Hence, our results are
not directly related to those of Refs. 7 and 14. The large-N
techniques of Ref. 2 do predict a continuous transition from
Néel order to disorder, but the ground-state degeneracy can
only be computed for integer N. We hope that our numerical
results for the critical exponents encourage others to pursue
extended analytical calculations: the only available estimates
of exponents15 are for representations with n�1 and do not
go beyond order 1 /N.

Finally, we note that the algorithm presented here can be
applied with minor modifications to the case of one-
dimensional Heisenberg models with another generalized
symmetry, namely, SU�2�k. This open the door to the numeri-
cal study of topological quantum liquids, as found in Ref. 16.

During the completion of this work, a more efficient al-
gorithm for the N=2 case was proposed by Sandvik and
Evertz.17 This algorithm performs nonlocal moves by flip-
ping spins around the loops in a mixed spin-VB representa-
tion of the projection. It is straightforward to generalize this
algorithm to the SU�N� case for integer N, as has been done
in Ref. 18. One of us19 has recently shown that an algorithm
for real N can be constructed using a loop representation of
the SU�N� model matrix elements similar to the one pre-
sented in Ref. 20. Early results obtained with this algorithm
are in agreement with those presented in this work.
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